
MCH-documentation / docs /Moonchain-Design / zk.md

MCH-dev Initial commit 00348e5 · 25 minutes ago

419 lines (277 loc) · 10.9 KB

sidebar_position

12

At Moonchain, once a block is produced, validated, and verified, a certain amount of

new MCH tokens will be minted. These newly minted MCH tokens are then added to

the staking pool, where participants in the mining process can earn them as rewards.

JDI-Group MCH-documentation

Code Issues Pull requests Actions Projects Security Insigh

Moonchain ZK Lite Paper

Mint of MCH

Preview Code Blame Raw

https://github.com/JDI-Group/MCH-documentation/tree/main
https://github.com/JDI-Group/MCH-documentation/tree/main/docs
https://github.com/JDI-Group/MCH-documentation/tree/main/docs/Moonchain-Design
https://github.com/JDI-Group/MCH-documentation/commit/00348e5387ad78a361e2e42dc0805b33bf764931
https://github.com/JDI-Group/MCH-documentation/commit/00348e5387ad78a361e2e42dc0805b33bf764931
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_MCH.png
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_MCH.png
https://github.com/
https://github.com/JDI-Group
https://github.com/JDI-Group/MCH-documentation
https://github.com/notifications
https://github.com/JDI-Group/MCH-documentation
https://github.com/JDI-Group/MCH-documentation/issues
https://github.com/JDI-Group/MCH-documentation/pulls
https://github.com/JDI-Group/MCH-documentation/actions
https://github.com/JDI-Group/MCH-documentation/projects
https://github.com/JDI-Group/MCH-documentation/security
https://github.com/JDI-Group/MCH-documentation/network/dependencies
https://github.com/JDI-Group/MCH-documentation/commits/main/docs/Moonchain-Design/zk.md
https://github.com/JDI-Group/MCH-documentation/raw/refs/heads/main/docs/Moonchain-Design/zk.md
https://github.com/JDI-Group/MCH-documentation/edit/main/docs/Moonchain-Design/zk.md

There are two types of participants: miner owners and those without miners who wish

to join the process. Miner owners act as group leaders, forming mining groups and

allowing others to participate. Group leaders must keep their miners in good condition

to receive rewards. Those joining a group should choose one with a strong track

record of miner performance, as any penalties imposed on a disqualified mining

group will affect all associated participants.

PS: The reward distribution shown above is subject to change over time.

Participating

https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_StakingRoles.png
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_StakingRoles.png

A mobile application for participants (end users).

A back-end service responsible for miner registration. It also analyses miner status

and forwards the results to the staking contract.

A back-end service includes the prover manager and the Taiko-client-prover. It is

responsible for SGX proof generation for miners, miner registration, and miner data

analysis for penalty issuance.

A service running on the miner that retrieves jobs from the back end, generates SGX

proofs, and submits them back.

System Block diagram

APP

Proxy Service

MCH-prover-service

sgx-prover

https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_BlockDiagram.png
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_BlockDiagram.png

The staking-related contracts have been deployed on the Arbitrum chain.

When an SGX miner is produced, the manufacturer mints an NFT for it. When a user

purchases the miner, they can claim the corresponding NFT to their own wallet.

The miner owner, who also serves as the mining group leader, must first create a

MiningGroupToken to establish a mining group. This allows other users to join and

participate in the mining process. Once the group is formed, the miner owner can

stake a designated amount of MCH into the pool and claim rewards after a set period.

Users without a miner can stake by referencing an existing group. When rewards are

claimed, a portion of the earnings is allocated to the group leader as a commission.

A staking period, known as an epoch, lasts for seven days and aligns with every

Thursday at 00:00 UTC. Rewards are calculated based on the number of epochs the

amount has been staked.

Contracts

Staking Period (a Epoch)

https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_StakingContracts.png
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_StakingContracts.png

If a miner's performance falls short of expectations, a penalty will be imposed on the

associated participants—namely, the owner and those who have staked on the owner.

As a result, the reward for one epoch will be reduced.

Penalty Condition (at the time of checking):

The online time has not reached 85% in the past seven days.

When a miner performing actions that harm the network, the staked amount linked to

the miner will be slash.

List of harmful actions:

Submission of an Invalid Proof. A miner submitting an invalid proof, which will be

rejected by the block proving process.

Failure of Three Consecutive SGX Generation Jobs. [To be apply later]

Penalty

Reward Reduction

Slash of staked amount

https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_EpochTimeline.png
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_EpochTimeline.png
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_PenaltyTimeline.png
https://github.com/JDI-Group/MCH-documentation/blob/main/docs/Moonchain-Design/zk_PenaltyTimeline.png

The staking process interacts with the following contracts on the Arbitrum chain:

MCHL1 (TaikoL1.sol)

Testnet: 0x6a5c9E342d5FB5f5EF8a799f0cAAB2678C939b0B

Mainnet: 0x54D8864e8855A7B66eE42B8F2Eaa0F2E06bd641a

MCHToken (MCHToken.sol)

L1Staking (L1Staking.sol)

ZkCenter (ZkCenter.sol)

The contract source code can be found in the MCH-mono repository and MCH-

zkcenter repository.

Below are the example flows for basic staking actions.

Interact with Contracts

Get contract addresses from MCHL1.

MCHL1APP

MCHL1APP

resolve(encodeBytes32String('taiko_token'))

Address of MCHToken Contract

resolve(encodeBytes32String('staking'))

Address of L1Staking Contract

resolve(encodeBytes32String('zkcenter'))

Address of ZkCenter Contract

Create a group and stake (for miner owner)

https://github.com/JDI-Group/MCH-mono/tree/moonchain-mainnet/packages/protocol/contracts
https://github.com/JDI-Group/MCH-zkcenter
https://github.com/JDI-Group/MCH-zkcenter

MCHTokenZkCenterAPP

MCHTokenZkCenterAPP

Registered 1 or more miner(s)

miningGroupCreate

success

approve(addressL1Staking, amount)

Success

stakeDeposit(amount)

Success

Stake (non miner owner)

ZkCenterMCHTokenAPP

ZkCenterMCHTokenAPP

Select a group

approve(addressL1Staking, amount)

Success

stakeToGroup(groupId, amount)

Success

Claim Reward

ZkCenterAPP

ZkCenterAPP

Proceed if amount > 0

stakeGetGrossReward()

Gross amount

stakeClaimReward()

Success

Withdraw

ZkCenterAPP

ZkCenterAPP

Perform the request first.

Wait for lock period.

stakeRequestWithdraw(false)

Success

stakeClaimReward()

Success

stakeWithdraw()

Success

Claim Commission (Group Leader)

Mainnet base URL: https://prover-manager.moonchain.com/

Testnet base URL: https://Hudson-prover-manager.moonchain.com/

This is the first step of the miner registration. Call this with the created wallet address

to start the process. A agentToken will return. The APP must send the wallet address

and agentToken to the miner, then the miner will use this information to verify itself

with the Prover Service.

Example POST data:

Example response:

ZkCenterAPP

ZkCenterAPP

Proceed if amount > 0

stakeGetCommission()

Amount of commission

stakeClaimCommission()

Success

Prover Service (back-end server) APIs for APP

POST /app/registerMiner1

{
 "instanceId": 0,
 "walletAddress": "0x0123456789ABCDEF0123456789ABCDEF01234567"
}

https://prover-manager.moonchain.com/
https://hudson-prover-manager.moonchain.com/

This is the second step of the registration. After the miner verify itself with the
agentToken got from step 1, this step will be success and returned a appToken . The
appToken will be used to query the miner status later on.

Example POST data:

Example response (miner not verify yet):

Example response (miner verified):

Get the list of miners.

{
 "ret": 0,
 "message": "",
 "result": {
 "agentToken": "VZ/NkCa4I0WCzO9SW9HCx6fzgOYLpyXMC/uTqxG+qFA="
 }
}

POST /app/registerMiner2

{
 "instanceId": 0
}

{
 "ret": 0,
 "message": "Wait for miner.",
 "result": {
 "appToken": "",

"waitForMiner": true
 }
}

{
 "ret": 0,
 "message": "",
 "result": {
 "appToken": "K6P1QE7Az6Qh8JmPFjgR1XhG9bbzWviO1zKMhWN2FyU",

"waitForMiner": false
 }
}

GET /app/minerList/<WALLET_ADDRESS>

Auth header:

Example response:

Get the status of a miner.

Auth header:

Example response:

"Authorization" : "Bearer <APP_TOKEN>"

{
 "ret": 0,
 "message": "",
 "result": {
 "count": 4
 "minerList": [
 {"instanceId": 1, "lastPing": "2025-02-10T15:01:34.000Z",
"online": 1},
 {"instanceId": 3, "lastPing": "2025-02-10T15:03:14.000Z",
"online": 1},
 {"instanceId": 5, "lastPing": "2025-02-10T15:05:24.000Z",
"online": 1},
 {"instanceId": 7, "lastPing": "2025-02-10T15:07:44.000Z",
"online": 1}
]
 }
}

GET /app/minerStatus/<INSTANCE_ID>

"Authorization" : "Bearer <APP_TOKEN>"

{
 "ret": 0,
 "message": "",
 "result": {
 "lastPing": "2025-02-10T15:01:34.000Z",
 "online": {"value": 1, "timestamp": "2025-02-10T15:00:00Z"},
 "proofReceived": {"value": 22, "timestamp": "2025-02-
10T15:00:00Z"},
 "proofRejected": {"value": 15, "timestamp": "2025-02-
10T15:00:00Z"}
 }
}

"online", "proofReceived", "proofRejected" are statistic result of past 1 hour data.

Retrieve a miner's statistical data. The ITEM parameter can be one of the following:
"online" , "proofReceived" , or "proofRejected" . Additionally, the optional
daily parameter returns data aggregated on a daily basis; if omitted, the data will

be aggregated on a 7 days (1 epoch) basis.

Auth header:

Example response:

Here’s an example flow for registering a miner.

1. Purchase a miner.

2. Use the APP to create a wallet.

3. Connect to the miner via Bluetooth using the app.

4. The APP getting the instance ID via Bluetooth.

5. Perform first registration step with Prover Service with the wallet address and

instance ID.

GET /app/minerStatistic/<INSTANCE_ID>/<ITEM>/[daily]

"Authorization" : "Bearer <APP_TOKEN>"

{
 "ret": 0,
 "message": "",
 "result": {
 "item": "proofReceived",
 "data": [
 {"value": 0, "timestamp": "2024-12-05T00:00:00Z"},
 {"value": 0, "timestamp": "2024-12-12T00:00:00Z"},
 {"value": 0, "timestamp": "2024-12-19T00:00:00Z"},
 {"value": 0, "timestamp": "2024-12-26T00:00:00Z"},
 {"value": 0, "timestamp": "2025-01-02T00:00:00Z"},
 {"value": 0, "timestamp": "2025-01-09T00:00:00Z"},
 {"value": 0, "timestamp": "2025-01-16T00:00:00Z"},
 {"value": 0, "timestamp": "2025-01-23T00:00:00Z"},
 {"value": 0, "timestamp": "2025-01-30T00:00:00Z"},
 {"value": 0, "timestamp": "2025-02-06T00:00:00Z"},
 {"value": 114,"timestamp": "2025-02-13T00:00:00Z"}
]
 }
}

Miner Registration Flow

6. Save the wallet address and the received agent token to the miner. Then restart

the service at miner.

7. Perform second registration step with Prover Service.

8. Claim the SGX miner NFT.

APPZkCenterProverServiceMiner

APPZkCenterProverServiceMiner

loop [Not registered]

Start of registration

End of registration

opt [APP operations]

loop [Registered]

ping

Auth failed

Get miner's instance ID

Instance ID

registerMiner1

agentToken

Save walletAddress and agentToken

success

Restart agent service

ping with correct agentToken

success

registerMiner2

minerRegister

success

appToken

minerClaim

success

minerStatus

status

fetch/submit proof jobs

success

